4.8 Review

Effects of energetic disorder in bulk heterojunction organic solar cells

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 15, 期 7, 页码 2806-2818

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ee00271j

关键词

-

资金

  1. National Key Research & Development Program of China [2017YFA0206600]
  2. National Natural Science Foundation of China [52125306, 21875286, 22005347]
  3. Natural Science Foundation of Hunan province [2021JJ20068]

向作者/读者索取更多资源

Organic solar cells (OSCs) have made rapid progress in recent years through the development of novel organic photoactive materials, particularly non-fullerene acceptors (NFAs). However, the understanding of the interplay between molecular structure and optoelectronic properties lags significantly behind. The potential role of energetic disorder in OSCs has received little attention, but recent studies have shown that state-of-the-art NFA-based devices can achieve both low energetic disorder and high power conversion efficiency (PCE).
Organic solar cells (OSCs) have progressed rapidly in recent years through the development of novel organic photoactive materials, especially non-fullerene acceptors (NFAs). Consequently, OSCs based on state-of-the-art NFAs have reached significant milestones, such as similar to 19% power conversion efficiencies (PCEs) and small energy losses (less than 0.5 eV). Despite these significant advances, understanding of the interplay between molecular structure and optoelectronic properties lags significantly behind. For example, despite the theoretical framework for describing the energetic disorder being well developed for the case of inorganic semiconductors, the question of the applicability of classical semiconductor theories in analyzing organic semiconductors is still under debate. A general observation in the inorganic field is that inorganic photovoltaic materials possessing a polycrystalline microstructure exhibit suppressed disorder properties and better charge carrier transport compared to their amorphous analogs. Accordingly, this principle extends to the organic semiconductor field as many organic photovoltaic materials are synthesized to pursue polycrystalline-like features. Yet, there appears to be sporadic examples that exhibit an opposite trend. However, full studies decoupling energetic disorder from aggregation effects have largely been left out. Hence, the potential role of the energetic disorder in OSCs has received little attention. Interestingly, recently reported state-of-the-art NFA-based devices could achieve a small energetic disorder and high PCE at the same time; and interest in this investigation related to the disorder properties in OSCs was revived. In this contribution, progress in terms of the correlation between molecular design and energetic disorder is reviewed together with their effects on the optoelectronic mechanism and photovoltaic performance. Finally, the specific challenges and possible solutions in reducing the energetic disorder of OSCs from the viewpoint of materials and devices are proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据