4.7 Article

Experimental investigation into stationary operated, thermochemical recuperation applied to a 200 kW industrial scale oxy-fuel furnace

期刊

APPLIED THERMAL ENGINEERING
卷 212, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2022.118580

关键词

Thermochemical recuperation; Waste heat recuperation; Steam-reforming; Oxidation of methane; Ni-catalyst

资金

  1. Austrian Research Promotion Agency (FFG) [878167, 884804, 31987466, 37352202]
  2. European Regional Development Fund (ERDF)

向作者/读者索取更多资源

This paper presents the first report of experimental investigations into thermochemical recuperation (TCR) in industrial scale, demonstrating its high methane conversion rates, effective temperature control, and increased furnace power input.
Efficiency optimizations of industrial processes will play a key role in future actions reducing the global greenhouse gas emissions. This also applies to the industrial high temperature sector whereby the approach of thermochemical recuperation (TCR) is promising for such applications. The current paper thus presents the first report of experimental investigations into TCR in industrial scale (200 kW power input) and in recuperative mode with combined steam reforming and partial oxidation of methane applied inside the reactor. In contrast to previous investigations in industrial scale reported, which exclusively focused on regenerative concepts, the use of oxygen as part of the reactants plays a key role with respect to the following aspects: (I) Methane conversion: CH4 conversion rates higher than 80% were observed for all adjusted operation points. Efficient conversion of methane to syngas was thus provided by the approach. (II) Temperature control: The addition of oxygen influenced the temperature distribution inside the reactor considerably, causing an increase of the average temperature from 771 ? to 801 ?. Consequently, oxygen addition is an appropriate method for temperature control inside the reactor. (III) Efficiency: The furnace power input was increased by a maximum of 12.1% compared to conventional oxy-fuel combustions without TCR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据