4.6 Article

A general quantum algorithm for open quantum dynamics demonstrated with the Fenna-Matthews-Olson complex

期刊

QUANTUM
卷 6, 期 -, 页码 -

出版社

VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF

关键词

-

资金

  1. U.S. Department of Energy (Office of Basic Energy Sciences) [DE-SC0019215]

向作者/读者索取更多资源

This paper introduces the research on using quantum algorithms to simulate complex physical processes and demonstrates the simulation of the dynamics of the FMO complex using a quantum algorithm. The study shows that quantum methods have a query complexity advantage in addressing open quantum dynamics.
Using quantum algorithms to simulate complex physical processes and correlations in quantum matter has been a major direction of quantum computing research, towards the promise of a quantum advantage over classical approaches. In this work we develop a generalized quantum algorithm to simulate any dynamical process represented by either the operator sum representation or the Lindblad master equation. We then demonstrate the quantum algorithm by simulating the dynamics of the Fenna-Matthews-Olson (FMO) complex on the IBM QASM quantum simulator. This work represents a first demonstration of a quantum algorithm for open quantum dynamics with a moderately sophisticated dynamical process involving a realistic biological structure. We discuss the complexity of the quantum algorithm relative to the classical method for the same purpose, presenting a decisive query complexity advantage of the quantum approach based on the unique property of quantum measurement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据