4.6 Article

Hyperbolic plasmons in massive tilted two-dimensional Dirac materials

期刊

PHYSICAL REVIEW B
卷 105, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.105.L201408

关键词

-

向作者/读者索取更多资源

This study explores topological transitions in the propagation of surface electromagnetic modes in massive anisotropic tilted 2D Dirac systems. The presence of tilting and mass results in an indirect band gap and new Van Hove singularities. The interplay between intra- and interband transitions leads to an anisotropic optical conductivity with opposite signs of imaginary parts in orthogonal directions, enabling hyperbolic propagation of plasmons. This behavior is only attainable when tilt and mass coexist via frequency and Fermi level variation.
We explore topological transitions in the type of propagation of surface electromagnetic modes in massive anisotropic tilted two-dimensional (2D) Dirac systems. The presence of tilting and mass gives rise to an indirect band gap that strongly modifies the joint density of states compared to the gapless system. New Van Hove singularities appear, and the interplay between intra- and interband transitions leads to an anisotropic optical conductivity with imaginary parts acquiring opposite signs in orthogonal directions, opening the possibility of having hyperbolic propagation of plasmons. Isofrequency contours and low plasmon losses, as obtained from the dispersion relation, show that transitions between purely anisotropic quasielliptical and well-defined, highly directional, hyperbolic modes are attainable only when tilt and mass coexist via frequency and Fermi level variation. This behavior could be probed in massive tilted 2D Dirac materials like the organic-layered compound a-(BEDT-TTF)2I3 [BEDT-TTF = (bis-(ethylenedithio)tetrathiafulvalene)] or WTe2, in which hyperbolic plasmons were recently observed, through far-infrared absorption, optical nanoscopy, and similar current tools in graphene plasmonics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据