4.6 Article

Key graph properties affecting transport efficiency of flip-flop Grover percolated quantum walks

期刊

PHYSICAL REVIEW A
卷 105, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.105.062417

关键词

-

资金

  1. Centre for Advanced Applied Sciences - Operational Programme Research, Development and Education [CZ.02.1.01/0.0/0.0/16019/0000778]
  2. European Structural and Investment Funds
  3. [RVO14000]

向作者/读者索取更多资源

Quantum walks exhibit properties without classical analogues. We provide a recipe for the construction of a complete basis of trapped states allowing to determine the asymptotic probability of trapping for arbitrary finite connected simple graphs, thus significantly generalizing the previously known result restricted to planar 3-regular graphs.
Quantum walks exhibit properties without classical analogues. One of those is the phenomenon of asymptotic trapping???there can be nonzero probability of the quantum walker being localized in a finite part of the underlying graph indefinitely even though locally all directions of movement are assigned nonzero amplitudes at each step. We study quantum walks with the flip-flop shift operator and the Grover coin, where this effect has been identified previously. For the version of the walk further modified by a random dynamical disruption of the graph (percolated quantum walks) we provide a recipe for the construction of a complete basis of the subspace of trapped states allowing to determine the asymptotic probability of trapping for arbitrary finite connected simple graphs, thus significantly generalizing the previously known result restricted to planar 3-regular graphs. We show how the position of the source and sink together with the graph geometry and its modifications affect the excitation transport. This gives us a deep insight into processes where elongation or addition of dead-end subgraphs may surprisingly result in enhanced transport and we design graphs exhibiting this pronounced behavior. In some cases this even provides closed-form formulas for the asymptotic transport probability in dependence on some structure parameters of the graphs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据