4.7 Article

Local accumulation times in a diffusion-trapping model of receptor dynamics at proximal axodendritic synapses

期刊

PHYSICAL REVIEW E
卷 105, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.105.064407

关键词

-

向作者/读者索取更多资源

The lateral diffusion and trapping of neurotransmitter receptors within the postsynaptic membrane of a neuron are crucial for synaptic strength and plasticity. This paper introduces a method to analyze the dynamics of synapses in a diffusion-trapping model of receptor trafficking, revealing the independence of steady-state synaptic weights and the influence of local accumulation times on synaptic plasticity.
The lateral diffusion and trapping of neurotransmitter receptors within the postsynaptic membrane of a neuron play a key role in determining synaptic strength and plasticity. Trapping is mediated by the reversible binding of receptors to scaffolding proteins (slots) within a synapse. In this paper we introduce a method for analyzing the transient dynamics of proximal axodendritic synapses in a diffusion-trapping model of receptor trafficking. Given a population of spatially distributed synapses, each of which has a fixed number of slots, we calculate the rate of relaxation to the steady-state distribution of bound slots (synaptic weights) in terms of a set of local accumulation times. Assuming that the rates of exocytosis and endocytosis are sufficiently slow, we show that the steady-state synaptic weights are independent of each other (purely local). On the other hand, the local accumulation time of a given synapse depends on the number of slots and the spatial location of all the synapses, indicating a form of transient heterosynaptic plasticity. This suggests that local accumulation time measurements could provide useful information regarding the distribution of synaptic weights within a dendrite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据