4.6 Article

Measurement-based logical qubit entanglement purification

期刊

PHYSICAL REVIEW A
卷 105, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.105.062418

关键词

-

资金

  1. National Natural Science Foundation of China [11974189, 12175106]

向作者/读者索取更多资源

In this study, a new measurement-based logical qubit entanglement purification protocol (MBLEPP) is proposed, which can tolerate photon loss and errors from imperfect QND. It combines the advantages of MBEPP and quantum error correction code, and may have potential applications in long-distance quantum communication.
Entanglement purification is the distilling of high-quality entanglement from low-quality entanglement and is a key element in the quantum repeater. As a new branch of entanglement purification, the measurement-based entanglement purification protocol (MBEPP) only requires one to perform the Bell state measurement to couple resource states with noisy pairs, and it tolerates more local noise than the conventional purification protocols. Existing MBEPPs usually focus on physical qubit entanglement. In this paper, we propose a measurement-based logical qubit entanglement purification protocol (MBLEPP) with quantum nondemolition detection (QND), where the qubit is encoded in the quantum parity code. The results show that this MBLEPP can also work with photon loss under the conditions that each block of the logical Bell state measurement contains at least one physical qubit, that at least one of the blocks is intact, and that the entanglement exists between all blocks. Moreover, we also consider the MBLEPP with imperfect QND. We show that below a certain QND error threshold, this MBLEPP can still work. In this way, this MBLEPP not only obtains high-fidelity entanglement but also tolerates photon loss and the error from imperfect QND. This MBLEPP combines the benefits of the MBEPP and quantum error correction code and may have potential application in long-distance quantum communication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据