4.0 Article

Autonomous underwater glider observations in southern Lake Ontario and Niagara River plume

期刊

AQUATIC ECOSYSTEM HEALTH & MANAGEMENT
卷 25, 期 1, 页码 102-113

出版社

MICHIGAN STATE UNIV PRESS
DOI: 10.14321/aehm.025.01.102

关键词

Great Lakes; water quality; conductance; coastal

资金

  1. EPA Great Lakes National Program Office

向作者/读者索取更多资源

This study evaluates the water quality gradients between nearshore and offshore areas in the southern part of Lake Ontario using observations from a Slocum autonomous glider. The results show that the chlorophyll gradient is located below the surface and within the coastal boundary layer, which is important for differentiating biological communities.
The nearshore areas of the Laurentian Great Lakes provide valuable ecosystem services including habitat for a variety of species and water for surrounding communities. Recent declines in nearshore water quality have increased the need for understanding the connectivity between nearshore and offshore areas; however observing water quality variability across the dynamic nearshore to offshore transition zone poses logistical challenges for traditional observing systems. Here we evaluate cross-shore and along-shore water quality gradients using observations from two three-week deployments of a Slocum autonomous glider in southern Lake Ontario. The glider was deployed between the Niagara River mouth and Rochester, NY during early and late summer 2018, and each deployment resulted in over 3000 vertical profiles of the water column and several transects between 2 km and 20 km from shore. In early summer, the cross-shore chlorophyll gradient was characterized by highest values just below the surface, at the frontal zone between weakly stratified conditions closer to shore and unstratified conditions offshore. In late summer, stratified conditions extended across the entire survey area. The depth of the thermocline was deeper and chlorophyll values were lower within 10 km of shore than offshore, where the highest chlorophyll values were observed in a distinct layer below the thermocline. In both early and late summer, the frontal boundary indicated by the cross-shore chlorophyll gradient was located below the surface and well offshore of what is typically considered the nearshore zone but was within the width of the coastal boundary layer. The high-resolution glider observations provide a detailed view of patterns of variability across a dynamic coastal zone and pinpoint the cross-shore frontal boundary that may be important for biologists to differentiate biological communities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据