4.7 Article

Investigating the interaction between dietary polyphenols, the SARS CoV-2 spike protein and the ACE-2 receptor

期刊

FOOD & FUNCTION
卷 13, 期 15, 页码 8038-8046

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2fo00394e

关键词

-

资金

  1. Jacobs University Bremen

向作者/读者索取更多资源

The study found that the dietary compounds 5-caffeoyl quinic acid and epicatechin in coffee can reduce the binding between SARS-CoV-2 spike protein and the human ACE-2 receptor, thereby reducing the risk of infection.
The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has called for an urgent need for the identification of compounds able to control, prevent or slow down the global pandemic. Several dietary polyphenols were assayed against binding to the SARS CoV-2 S1 spike protein and the human ACE-2 receptor, the target of the SARS CoV-2 virus using nano differential scanning fluorimetry, suggesting interaction of dietary polyphenols with both proteins. Following this initial screening the two dietary polyphenols with the strongest affinity were evaluated in a second functional binding assay. The assay was based on the thermophoresis of a fluorescently labelled spike protein and the ACE-2 receptor in the presence of dietary concentrations of the polyphenol in question. It could be experimentally shown that 5-caffeoyl quinic acid and epicatechin reduce the binding constant between SARS CoV-2 spike protein of the alpha variant and the ACE-2 receptor by a factor of ten. The finding could as well be applied to black tea and a coffee beverage with dietary 5-CQA concentrations for the alpha variant Spike protein. Hence it can be speculated that a cup of coffee reduces binding of the virus to its human target, therefore reducing the likelihood of infection with SARS CoV-2, acting as a virus entry-inhibitor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据