4.8 Article

Facile fabrication of hierarchical textures for substrate-independent and durable superhydrophobic surfaces

期刊

NANOSCALE
卷 14, 期 26, 页码 9392-9400

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nr02157a

关键词

-

资金

  1. National Natural Science Foundation of China [52075557, 51805553]
  2. Natural Science Foundation of Hunan Province [2021JJ20067, 2021JJ30864]
  3. Science and Technology Innovation Program of Hunan Province [2021RC3011]

向作者/读者索取更多资源

In this study, a simple method to achieve superhydrophobicity on various substrate surfaces is proposed. By using femtosecond laser direct processing, grooves and protrusions are constructed on substrates to form a protective layer, followed by scanning with polytetrafluoroethylene (PTFE) to achieve superhydrophobicity. This method can achieve robust superhydrophobic surfaces with excellent anti-friction performance on different substrates.
On account of their wide range of applications in self-cleaning, anti-icing, frost suppression, etc., superhydrophobic surfaces have attracted considerate attention. However, most of the superhydrophobic surfaces can only be prepared on the surfaces of specific materials and are easily damaged in the case of friction. In this work, we propose a facile method to achieve superhydrophobicity on various substrate surfaces. By femtosecond laser direct processing, micron-level grooves and protrusions are constructed on substrates to form a protective layer. Then, the substrates covered by polytetrafluoroethylene (PTFE) were scanned to make the surfaces of the substrates superhydrophobic. Since the PTFE micro-nano-particles are evenly distributed on the grooves and protrusions, the surfaces exhibit robust superhydrophobicity with excellent anti-friction performance that is independent of the substrate properties. This work provides an efficient and environmentally friendly path for achieving robust superhydrophobic surfaces on various substrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据