4.4 Article

TiO2 Nanoparticles Dispersion in Block-Copolymer Aqueous Solutions: Nanoarchitectonics for Self-Assembly and Aggregation

期刊

JOURNAL OF FUNCTIONAL BIOMATERIALS
卷 13, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/jfb13020039

关键词

pluronic F127; TiO2; self-assembly; dynamic light scattering

向作者/读者索取更多资源

Achieving homogenous dispersion of nanoparticles in a polymeric matrix is a great challenge. This study focuses on investigating the role of different factors on the dispersion properties of TiO2 in pluronic F-127 mixtures. The results provide insights into the most favorable conditions and a possible strategy for designing functional nanoparticle-polymer systems.
Achieving homogenous dispersion of nanoparticles inside a polymeric matrix is a great challenge for numerous applications. In the present study, we aim at understanding the role of different factors on the dispersion properties of TiO2 in pluronic F-127 mixtures. The mixtures were prepared with different pH and guest/host ratios and investigated by UV-Vis spectroscopy, dynamic light scattering, infrared spectroscopy and electrical conductivity. Depending on the preparation conditions, different amounts of TiO2 were loaded within the copolymer as quantitatively determined by UV-Vis spectroscopy. The different content of nanoparticles has direct implications on the gelation and micellization of pluronic analyzed by dynamic light scattering. The information derived on the self-assembly behavior was interpreted in relation to the infrared and conductivity measurements results. Together, these results shed light on the most favorable conditions for improving the nanoparticle dispersion inside the copolymer matrix and suggest a possible strategy to design functional nanoparticle-polymer systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据