4.7 Article

Plasma cysteine/cystine redox couple disruption in animal models of temporal lobe epilepsy

期刊

REDOX BIOLOGY
卷 9, 期 -, 页码 45-49

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.redox.2016.05.004

关键词

Epilepsy; Biomarker; Cysteine; Glutathione; Catalytic antioxidant; HPLC

资金

  1. NINDS [UO1NS083422, R01NS086423]
  2. Associate Dean of Research Seed Grant Program, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado

向作者/读者索取更多资源

Currently the field of epilepsy lacks peripheral blood-based biomarkers that could predict the onset or progression of chronic seizures following an epileptogenic injury. Thiol/disulfide ratios have been shown to provide a sensitive means of assessing the systemic redox potential in tissue and plasma. In this study, we utilized a rapid, simple and reliable method for simultaneous determination of several thiol-containing amino acids in plasma using HPLC with electrochemical detection in kainic acid (KA) and pilocarpine rat models of epilepsy. In contrast to GSH and GSSG levels, the levels of cysteine (Cys) were decreased by 42% and 62% and cystine (Cyss) were increased by 46% and 23% in the plasma of KA- and pilocarpine-injected rats, respectively after 48 h. In chronically epileptic rats, plasma cysteine was decreased by 40.4% and 37.7%, and plasma GSSG increased by 33.8% and 35.0% following KA and pilocarpine, respectively. Treatment of rats with a catalytic antioxidant, 60 min after KA or pilocarpine significant attenuated the decrease of plasma Cys/Cyss ratios at the 48 h time point in both models. These observations suggest that the decreased cysteine and ratio of Cys/Cyss in plasma could potentially serve as redox biomarkers in temporal lobe epilepsy. (C) 2016 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据