4.7 Article Data Paper

A 30 m annual maize phenology dataset from 1985 to 2020 in China

期刊

EARTH SYSTEM SCIENCE DATA
卷 14, 期 6, 页码 2851-2864

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/essd-14-2851-2022

关键词

-

资金

  1. National Natural Science Foundation of China [41971383]

向作者/读者索取更多资源

In this study, a fine-resolution phenology product of maize in China was generated using Landsat observations, providing accurate information on crop growth phases. The dataset was consistent with in situ observations and MODIS phenology product, and it revealed noticeable changes in maize phenology temporal trends before and after 2000.
Crop phenology indicators provide essential information on crop growth phases, which are highly required for agroecosystem management and yield estimation. Previous crop phenology studies were mainly conducted using coarse-resolution (e.g., 500 m) satellite data, such as the moderate resolution imaging spectroradiometer (MODIS) data. However, precision agriculture requires higher resolution phenology information of crops for better agroecosystem management, and this requirement can be met by long-term and fine-resolution Landsat observations. In this study, we generated the first national maize phenology product with a fine spatial resolution (30 m) and a long temporal span (1985-2020) in China, using all available Landsat images on the Google Earth Engine (GEE) platform. First, we extracted long-term mean phenological indicators using the harmonic model, including the v3 (i.e., the date when the third leaf is fully expanded) and the maturity phases (i.e., when the dry weight of maize grains first reaches the maximum). Second, we identified the annual dynamics of phenological indicators by measuring the difference in dates when the vegetation index in a specific year reaches the same magnitude as its long-term mean. The derived maize phenology datasets are consistent with in situ observations from the agricultural meteorological stations and the PhenoCam network. Besides, the derived fine-resolution phenology dataset agrees well with the MODIS phenology product regarding the spatial patterns and temporal dynamics. Furthermore, we observed a noticeable difference in maize phenology temporal trends before and after 2000, which is likely attributable to the changes in temperature and precipitation, which further altered the farming activities. The extracted maize phenology dataset can support precise yield estimation and deepen our understanding of the future agroecosystem response to global warming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据