4.6 Article

Dynamic Variations in Rumen Fermentation Characteristics and Bacterial Community Composition during In Vitro Fermentation

期刊

FERMENTATION-BASEL
卷 8, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/fermentation8060276

关键词

dynamic variation; fermentation characteristic; in vitro fermentation; rumen bacterial community

资金

  1. National Natural Science Foundation of China [32160807]
  2. Science and Technology Project of Education Department of Jiangxi Province [GJJ200451, GJJ210405]
  3. Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province [20213BCJL22043]
  4. Jiangxi Agriculture Research System [JXARS-13]

向作者/读者索取更多资源

This study aimed to explore the dynamic variations of rumen fermentation characteristics and bacterial community composition during a 24 h in vitro fermentation. Results showed that gas production, concentrations of microbial crude protein, ammonia nitrogen, and individual volatile fatty acids (VFA), as well as total VFA and branched-chain VFA concentrations, were higher in R24 when compared with R12. Bacterial diversity analysis found that Shannon index and Simpson index were higher in R24, and obvious clusters were observed in rumen bacterial community between R12 and R24. Taxonomic analysis revealed differences in abundance of bacterial phyla and genera between R12 and R24, and correlation analysis showed associations between gas production and bacterial abundances, as well as between VFA production and bacterial abundances.
This study aimed to explore the dynamic variations of rumen fermentation characteristics and bacterial community composition during a 24 h in vitro fermentation. A total of twenty-three samples were collected from original rumen fluid (ORF, n = 3), fermentation at 12 h (R12, n = 10), and fermentation at 24 h (R24, n = 10). Results showed that gas production, concentrations of microbial crude protein, ammonia nitrogen, and individual volatile fatty acids (VFA), as well as total VFA and branched-chain VFA concentrations, were higher in R24 when compared with R12 (p < 0.05). However, no significant differences were observed in acetate to propionate ratio and fermentation efficiency between R12 and R24 (p > 0.05). Bacterial diversity analysis found that Shannon index and Simpson index were higher in R24 (p < 0.05), and obvious clusters were observed in rumen bacterial community between R12 and R24. Taxonomic analysis at the phylum level showed that the abundances of Proteobacteria and Fibrobacteres were higher in R12 than that in R24, and inverse results were observed in Bacteroidetes, Firmicutes, Cyanobacteria, Verrucomicrobia, Lentisphaerae, and Synergistetes abundances. Taxonomic analysis at the genus level revealed that the abundances of Rikenellaceae RC9 gut group, Succiniclasticum, Prevotellaceae UCG-003, Christensenellaceae R-7 group, Ruminococcaceae UCG-002, Veillonellaceae UCG-001, and Ruminococcaceae NK4A214 group were higher in R24, whereas higher abundances of Succinivibrionaceae UCG-002, Ruminobacter, and Fibrobacter, were found in R12. Correlation analysis revealed the negative associations between gas production and abundances of Proteobacteria, Succinivibrionaceae UCG-002, and Ruminobacter. Moreover, the abundances of Firmicutes, Rikenellaceae RC9 gut group, Christensenellaceae R-7 group, and Ruminococcaceae UCG-002 positively correlated with VFA production. These results indicate that both rumen fermentation characteristics and bacterial community composition were dynamic during in vitro fermentation, whereas the fermentation pattern, efficiency, and bacterial richness remained similar. This study provide insight into the dynamics of rumen fermentation characteristics and bacterial composition during in vitro fermentation. This study may also provide a reference for decision-making for the sampling time point when conducting an in vitro fermentation for bacterial community investigation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据