4.5 Article

A Design Approach to Optimise Secure Remote Three-Dimensional (3D) Printing: A Proof-of-Concept Study towards Advancement in Telemedicine

期刊

HEALTHCARE
卷 10, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/healthcare10061114

关键词

3D printing; additive manufacturing; telemedicine; patient-centric dosage form

向作者/读者索取更多资源

Telemedicine is the delivery of healthcare services using electronic means. This study explores the application of secure remote 3D printing in the telemedicine cycle for personalised medicines. The research confirms the potential of 3D printing prototype solid dosage forms with good reproducibility and quality, contributing to the advancement of telemedicine and digital pharmacies.
Telemedicine is defined as the delivery of healthcare services at a distance using electronic means. The incorporation of 3D printing in the telemedicine cycle could result in pharmacists designing and manufacturing personalised medicines based on the electronic prescription received. Even with the advantages of telemedicine, numerous barriers to the uptake hinder the wider uptake. Of particular concern is the cyber risk associated with the remote digital transfer of the computeraided design (CAD) file (acting as the electronic prescription) to the 3D printer and the reproducibility of the resultant printed medicinal products. This proof-of-concept study aimed to explore the application of secure remote 3D printing of model solid dosage forms using the patented technology, DEFEND3D, which is designed to enhance cybersecurity and intellectual property (IP) protection. The size, shape, and colour of the remote 3D-printed model medicinal products were also evaluated to ensure the end-product quality was user-focused. Thermoplastic polyurethane (TPU) and poly(lactic) acid (PLA) were chosen as model polymers due to their flexibility in preventing breakage printing and ease of printing with fused deposition modelling (FDM). Our work confirmed the potential of secure remote 3D (FDM) printing of prototype solid dosage forms resulting in products with good reproducibility, resolution, and quality towards advancements in telemedicine and digital pharmacies. The limitation of the work presented here was the use of model polymers and not pharmaceutically relevant polymers. Further work could be conducted using the same designs chosen in this study with pharmaceutically relevant polymers used in hot-melt extrusion (HME) with shown suitability for FDM 3D printing. However, it should be noted that any challenges that may occur with pharmaceutically relevant polymers are likely to be related to the polymer's printability and printer choice as opposed to the ability of the CAD file to be transferred to the printer remotely.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据