3.8 Proceedings Paper

No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

向作者/读者索取更多资源

This paper proposes a novel model that combines CNN and Transformer to address the No-Reference Image Quality Assessment (NR-IQA) task. It captures both local and non-local features from the input image. The model leverages self-consistency as a source of self-supervision to improve the robustness of NR-IQA models. Experimental results demonstrate that the model achieves state-of-the-art results on various datasets.
The goal of No-Reference Image Quality Assessment (NR-IQA) is to estimate the perceptual image quality in accordance with subjective evaluations, it is a complex and unsolved problem due to the absence of the pristine reference image. In this paper, we propose a novel model to address the NR-IQA task by leveraging a hybrid approach that benefits from Convolutional Neural Networks (CNNs) and self-attention mechanism in Transformers to extract both local and non-local features from the input image. We capture local structure information of the image via CNNs, then to circumvent the locality bias among the extracted CNNs features and obtain a non-local representation of the image, we utilize Transformers on the extracted features where we model them as a sequential input to the Transformer model. Furthermore, to improve the monotonicity correlation between the subjective and objective scores, we utilize the relative distance information among the images within each batch and enforce the relative ranking among them. Last but not least, we observe that the performance of NR-IQA models degrades when we apply equivariant transformations (e.g. horizontal flipping) to the inputs. Therefore, we propose a method that leverages self-consistency as a source of self-supervision to improve the robustness of NR-IQA models. Specifically, we enforce self-consistency between the outputs of our quality assessment model for each image and its transformation (horizontally flipped) to utilize the rich self-supervisory information and reduce the uncertainty of the model. To demonstrate the effectiveness of our work, we evaluate it on seven standard IQA datasets (both synthetic and authentic) and show that our model achieves state-of-the-art results on various datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据