4.7 Article

Cellular imaging properties of phosphorescent iridium(III) complexes substituted with ester or amide groups

期刊

DALTON TRANSACTIONS
卷 51, 期 27, 页码 10501-10506

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2dt01551j

关键词

-

资金

  1. National Funds for Distinguished Young Scientists [61825503]
  2. National Natural Science Foundation of China [61975085]
  3. Natural Science Foundation of Jiangsu Province of China [BK20190088]
  4. Natural Science Foundation of Jiangxi Province [20202BAB214012]

向作者/读者索取更多资源

Phosphorescent iridium(III) complexes modified with different groups were used as imaging reagents for living cells. One complex stained the entire cell, while others localized in the cytoplasm. The nuclear uptake of the complex was mediated by clathrin and microtubules and was related to the cell division cycle.
Phosphorescent iridium(III) complexes have been extensively investigated as cellular imaging reagents and sensors. The intracellular localization of the complexes is known to be closely related to their formal charge, molecular size, lipophilicity, and bioactive pendants. Herein, we reported four phosphorescent iridium(III) complexes with the diimine ligands being modified with ester or amide groups as imaging reagents for living cells. The complexes have the same positive charge and very similar molecular size and weight. The lipophilicity of the complexes is similar ranging from 1.45 to 2.14. Upon internalization into living HeLa cells, while complexes 2-4, like most other iridium(III) complexes, were localized in the cytoplasm, complex 1 unexpectedly stained the whole cells including nuclei. The nuclear uptake of complex 1 was not observed when the cells were pretreated with chlorpromazine or nocodazole, suggesting that clathrin and microtubules mediated the nuclear uptake of complex 1. Additionally, the nuclear uptake efficiency is related to the cell division cycle. The complex was mainly concentrated in the nucleus when the cells were in mitosis, and distributed in whole cells when the cells were in the interphases. Furthermore, complex 1 exhibited a longer luminescence lifetime in the nucleus than in the cytoplasm as revealed by photoluminescence lifetime imaging microscopy (PLIM). Incubation of the cells in the hypoxia environment elongated the lifetime of the cytoplasmic complex, but hardly affected the luminescence properties of the intranuclear complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据