4.6 Article

NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8+ T lymphocytes

期刊

ONCOIMMUNOLOGY
卷 5, 期 6, 页码 -

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/2162402X.2016.1151593

关键词

B16-F10; CD8(+) T cells; CD80; Melanoma; MHC class-I; NLRC5; Pmel-1

资金

  1. Canadian Cancer Society Research Institute (CCSRI) Innovation grant [702798]
  2. German Research Foundation (DFG) [KU 1945/2-1]
  3. FRQS

向作者/读者索取更多资源

Cancers can escape immunesurveillance by diminishing the expression of MHC class-I molecules (MHC-I) and components of the antigen-processing machinery (APM). Developing new approaches to reverse these defects could boost the efforts to restore antitumor immunity. Recent studies have shown that the expression of MHC-I and antigen-processing molecules is transcriptionally regulated by NOD-like receptor CARD domain containing 5 (NLRC5). To investigate whether NLRC5 could be used to improve tumor immunogenicity, we established stable lines of B16-F10 melanoma cells expressing NLRC5 (B16-5), the T cell co-stimulatory molecule CD80 (B16-CD80) or both (B16-5/80). Cells harboring NLRC5 constitutively expressed MHC-I and LMP2, LMP7 and TAP1 genes of the APM. The B16-5 cells efficiently presented the melanoma antigenic peptide gp100(25-33) to Pmel-1 TCR transgenic CD8(+) T cells and induced their proliferation. In the presence of CD80, B16-5 cells stimulated Pmel-1 cells even without the addition of gp100 peptide, indicating that NLRC5 facilitated the processing and presentation of endogenous tumor antigen. Upon subcutaneous implantation, B16-5 cells showed markedly reduced tumor growth in C57BL/6 hosts but not in immunodeficient hosts, indicating that the NLRC5-expressing tumor cells elicited antitumor immunity. Following intravenous injection, B16-5 and B16-5/80 cells formed fewer lung tumor foci compared to control cells. In mice depleted of CD8(+) T cells, B16-5 cells formed large subcutaneous and lung tumors. Finally, immunization with irradiated B16-5 cells conferred protection against challenge by parental B16 cells. Collectively, our findings indicate that NLRC5 could be exploited to restore tumor immunogenicity and to stimulate protective antitumor immunity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据