4.7 Article

Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals

期刊

MOLECULAR METABOLISM
卷 5, 期 12, 页码 1175-1186

出版社

ELSEVIER
DOI: 10.1016/j.molmet.2016.10.003

关键词

Bacteroidetes; Firmicutes; Insulin resistance; Intestinal microbiome; Short-chain fatty acid; Sleep restriction

资金

  1. AFA Forsakring
  2. Bissen Brainwalk Foundation
  3. Erik, Karin and Gosta Selanders Foundation
  4. Fredrik och Ingrid Thurings Foundation
  5. Lars Hiertas Minne Foundation
  6. Novo Nordisk Foundation
  7. Tore Nilson Foundation
  8. Swedish Society for Medical Research
  9. Swedish Society for Medicine
  10. Swedish Brain Foundation
  11. Swedish Research Council
  12. Ake Wiberg Foundation
  13. Novo Nordisk Fonden [NNF14OC0009349] Funding Source: researchfish

向作者/读者索取更多资源

Objective: Changes to the microbial community in the human gut have been proposed to promote metabolic disturbances that also occur after short periods of sleep loss (including insulin resistance). However, whether sleep loss affects the gut microbiota remains unknown. Methods: In a randomized within-subject crossover study utilizing a standardized in-lab protocol (with fixed meal times and exercise schedules), we studied nine normal-weight men at two occasions: after two nights of partial sleep deprivation (PSD; sleep opportunity 02: 45-07: 00 h), and after two nights of normal sleep (NS; sleep opportunity 22: 30-07: 00 h). Fecal samples were collected within 24 h before, and after two in-lab nights, of either NS or PSD. In addition, participants underwent an oral glucose tolerance test following each sleep intervention. Results: Microbiota composition analysis (V4 16S rRNA gene sequencing) revealed that after two days of PSD vs. after two days of NS, individuals exhibited an increased Firmicutes: Bacteroidetes ratio, higher abundances of the families Coriobacteriaceae and Erysipelotrichaceae, and lower abundance of Tenericutes (all P < 0.05) - previously all associated with metabolic perturbations in animal or human models. However, no PSD vs. NS effect on beta diversity or on fecal short-chain fatty acid concentrations was found. Fasting and postprandial insulin sensitivity decreased after PSD vs. NS (all P < 0.05). Discussion: Our findings demonstrate that short-term sleep loss induces subtle effects on human microbiota. To what extent the observed changes to the microbial community contribute to metabolic consequences of sleep loss warrants further investigations in larger and more prolonged sleep studies, to also assess how sleep loss impacts the microbiota in individuals who already are metabolically compromised. (C) 2016 The Author(s). Published by Elsevier GmbH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据