4.7 Article

Targeting the endocannabinoid/CB1 receptor system for treating obesity in Pradere-Willi syndrome

期刊

MOLECULAR METABOLISM
卷 5, 期 12, 页码 1187-1199

出版社

ELSEVIER
DOI: 10.1016/j.molmet.2016.10.004

关键词

Endocannabinoids; PWS; Magel2; Peripheral CB1 blockade; Metabolic syndrome

资金

  1. Foundation for Prader Willi Research (FPWR) grants
  2. Israel Science Foundation (ISF) (ISF Grant) [617/14]
  3. Canadian Institutes of Health Research [MOP 130367]
  4. Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development
  5. Pradere-Willi Syndrome Association (USA) grant

向作者/读者索取更多资源

Objective: Extreme obesity is a core phenotypic feature of Prader-Willi syndrome (PWS). Among numerous metabolic regulators, the endocannabinoid (eCB) system is critically involved in controlling feeding, body weight, and energy metabolism, and a globally acting cannabinoid-1 receptor (CB1R) blockade reverses obesity both in animals and humans. The first-in-class CB1R antagonist rimonabant proved effective in inducing weight loss in adults with PWS. However, it is no longer available for clinical use because of its centrally mediated, neuropsychiatric, adverse effects. Methods: We studied eCB 'tone' in individuals with PWS and in the Magel2-null mouse model that recapitulates the major metabolic phenotypes of PWS and determined the efficacy of a peripherally restricted CB1R antagonist, JD5037 in treating obesity in these mice. Results: Individuals with PWS had elevated circulating levels of 2-arachidonoylglycerol and its endogenous precursor and breakdown ligand, arachidonic acid. Increased hypothalamic eCB 'tone', manifested by increased eCBs and upregulated CB1R, was associated with increased fat mass, reduced energy expenditure, and decreased voluntary activity in Magel2-null mice. Daily chronic treatment of obese Magel2-null mice and their littermate wild-type controls with JD5037 (3 mg/kg/d for 28 days) reduced body weight, reversed hyperphagia, and improved metabolic parameters related to their obese phenotype. Conclusions: Dysregulation of the eCB/CB1R system may contribute to hyperphagia and obesity in Magel2-null mice and in individuals with PWS. Our results demonstrate that treatment with peripherally restricted CB1R antagonists may be an effective strategy for the management of severe obesity in PWS. (C) 2016 The Author(s). Published by Elsevier GmbH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据