4.7 Article

A comprehensive lipidomic screen of pancreatic β-cells using mass spectroscopy defines novel features of glucose-stimulated turnover of neutral lipids, sphingolipids and plasmalogens

期刊

MOLECULAR METABOLISM
卷 5, 期 6, 页码 404-414

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molmet.2016.04.003

关键词

Pancreatic beta-cell; Insulin secretion; Diacylglycerol; Monacylglycerol; Ceramide; Plasmalogen

向作者/读者索取更多资源

Objective: Glucose promotes lipid remodelling in pancreatic beta-cells, and this is thought to contribute to the regulation of insulin secretion, but the metabolic pathways and potential signalling intermediates have not been fully elaborated. Methods: Using mass spectrometry (MS) we quantified changes in approximately 300 lipid metabolites in MIN6 beta-cells and isolated mouse islets following 1 h stimulation with glucose. Flux through sphingolipid pathways was also assessed in H-3-sphinganine-labelled cells using TLC. Results: Glucose specifically activates the conversion of triacylglycerol (TAG) to diacylglycerol (DAG). This leads indirectly to the formation of 18:1 monoacylglycerol (MAG), via degradation of saturated/monounsaturated DAG species, such as 16:0_18:1 DAG, which are the most abundant, immediate products of glucose-stimulated TAG hydrolysis. However, 16:0-containing, di-saturated DAG species are a better direct marker of TAG hydrolysis since, unlike the 18:1-containing DAGs, they are predominately formed via this route. Using multiple reaction monitoring, we confirmed that in islets under basal conditions, 18:1 MAG is the most abundant species. We further demonstrated a novel site of glucose to enhance the conversion of ceramide to sphingomyelin (SM) and galactosylceramide (GalCer). Flux and product: precursor analyses suggest regulation of the enzyme SM synthase, which would constitute a separate mechanism for localized generation of DAG in response to glucose. Phosphatidylcholine (PC) plasmalogen (P) species, specifically those containing 20:4, 22:5 and 22:6 side chains, were also diminished in the presence of glucose, whereas the more abundant phosphatidylethanolamine plasmalogens were unchanged. Conclusion: Our results highlight 18:1 MAG, GalCer, PC(P) and DAG/SM as potential contributors to metabolic stimulus-secretion coupling. (C) 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据