4.7 Article

Cross-correlation of Dark Energy Survey Year 3 lensing data with ACT and Planck thermal Sunyaev-Zel'dovich effect observations. I. Measurements, systematics tests, and feedback model constraints

期刊

PHYSICAL REVIEW D
卷 105, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.105.123525

关键词

-

资金

  1. U.S. Department of Energy [DE-SC0007901]
  2. NASA ATP Grant [NNH17ZDA001N]
  3. DOE [DE-AC02-98CH10886]
  4. National Research Foundation of South Africa
  5. Gordon and Betty Moore Foundation
  6. NSF AAG [AST-1615657]
  7. U.S. Department of Energy
  8. U.S. National Science Foundation
  9. Ministry of Science and Education of Spain
  10. Science and Technology Facilities Council of the United Kingdom
  11. Higher Education Funding Council for England
  12. National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign
  13. Kavli Institute of Cosmological Physics at the University of Chicago
  14. Center for Cosmology and Astro-Particle Physics at The Ohio State University
  15. Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University
  16. Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro
  17. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico
  18. Ministerio da Ciencia, Tecnologia e Inovacao
  19. Deutsche Forschungsgemeinschaft
  20. Argonne National Laboratory
  21. University of California at Santa Cruz
  22. University of Cambridge
  23. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid
  24. University of Chicago
  25. University College London
  26. DES-Brazil Consortium
  27. University of Edinburgh
  28. Eidgen?ssische Technische Hochschule (ETH) Zurich
  29. Fermi National Accelerator Laboratory
  30. University of Illinois at Urbana-Champaign
  31. Institut de Ciencies de l'Espai (IEEC/CSIC)
  32. Institut de Fisica d'Altes Energies
  33. Lawrence Berkeley National Laboratory
  34. Ludwig-Maximilians Universitat Munchen
  35. associated Excellence Cluster Universe
  36. University of Michigan
  37. National Optical Astronomy Observatory
  38. University of Nottingham
  39. Ohio State University
  40. University of Pennsylvania
  41. University of Portsmouth
  42. SLAC National Accelerator Laboratory
  43. Stanford University
  44. University of Sussex
  45. Texas AM University
  46. OzDES Membership Consortium
  47. National Science Foundation [AST-1138766, AST-1536171]
  48. MINECO [AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, MDM-2015-0509]
  49. ERDF funds from the European Union
  50. CERCA program of the Generalitat de Catalunya
  51. European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)
  52. ERC [240672, 291329, 306478]
  53. Brazilian Instituto Nacional de Ciencia e Tecnologia (INCT) e-Universe (CNPq Grant) [465376/2014-2]
  54. U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-07CH11359]
  55. U.S. National Science Foundation [AST-0408698, AST-0965625, AST-1440226, PHY-0355328, PHY-0855887, PHY-1214379]
  56. Princeton University
  57. Canada Foundation for Innovation (CFI)
  58. Agencia Nacional de Investigacion y Desarrollo (ANID)
  59. NASA [NNX13AE56G, NNX14AB58G]
  60. NIST Innovations in Measurement Science program

向作者/读者索取更多资源

In this study, we present a tomographic measurement of the cross-correlation between thermal Sunyaev-Zel'dovich (TSZ) maps and weak galaxy lensing shears. By analyzing the data, we find a high statistical significance of 21 sigma, providing evidence for strong active galactic nuclei feedback and gas ejection.
We present a tomographic measurement of the cross-correlation between thermal Sunyaev-Zel'dovich (TSZ) maps from Planck and the Atacama Cosmology Telescope and weak galaxy lensing shears measured during the first three years of observations of the Dark Energy Survey. This correlation is sensitive to the thermal energy in baryons over a wide redshift range and is therefore a powerful probe of astrophysical feedback. We detect the correlation at a statistical significance of 21 sigma, the highest significance to date. We examine the TSZ maps for potential contaminants, including cosmic infrared background and radio sources, finding that cosmic infrared background has a substantial impact on our measurements and must be taken into account in our analysis. We use the cross-correlation measurements to test different feedback models. In particular, we model the TSZ using several different pressure profile models calibrated against hydrodynamical simulations. Our analysis marginalizes over redshift uncertainties, shear calibration biases, and intrinsic alignment effects. We also marginalize over Omega(m) and sigma(8) using Planck or DES priors. We find that the data prefer the model with a low amplitude of the pressure profile at small scales, compatible with a scenario with strong active galactic nuclei feedback and ejection of gas from the inner part of the halos. When using a more flexible model for the shear profile, constraints are weaker, and the data cannot discriminate between different baryonic prescriptions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据