4.6 Article

Numerical investigation on heat transfer performance of a confined slot jet impingement with different MEPCM-water slurries using two-phase Eulerian-Eulerian model

期刊

出版社

ELSEVIER
DOI: 10.1016/j.tsep.2022.101315

关键词

Microencapsulatedphasechangematerials; Impingingjet; Eulerian-Euleriantwophaseapproach; Heattransferenhancement; Minichannel; Forcedconvection

向作者/读者索取更多资源

In this study, an in-house Fortran-based two-phase Eulerian-Eulerian solver is used to investigate an impinging jet in a minichannel using microencapsulated phase change material (MEPCM)-water slurry. The heat transfer performance of water-based n-eicosane and n-octadecane MEPCM slurries are examined, and the melting pattern of the particles within the minichannel is reported at various parameters. The research quantifies the heat transfer enhancement of the MEPCM-water slurry and identifies the optimal conditions for a water-based n-eicosane slurry at Re = 100 and epsilon(s) = 1%.
An in-house Fortran-based two-phase Eulerian-Eulerian solver is used to study an impinging jet with microen-capsulated phase change material (MEPCM)-water slurry in a minichannel. The heat transfer performance of water based n-eicosane and n-octadecane MEPCM slurries are reported here. The melting pattern of the particles within the minichannel are also reported at different parameters. Figure of merit (FOM) is used to quantify the heat transfer performance of the MEPCM-water slurry taking into account both the thermal and flow characteristics of the slurry. The heat transfer enhancement around 72% is found in the average Nusselt number for a 5%-n-eicosane water slurry, compared to that of pure water at a jet Reynolds number of 200. The melting region of MEPCM particles is found to come closer to the heated walls with an increase in Reynolds number. An increase in the Reynolds number from 100 to 300 has brought an increment of around 81% in the Nusselt number at the jet impinging region, while the increment in the average Nusselt number is around 145%. The figure of merit (FOM), increases from 1.34 to 1.64 with an increase in particle concentration from 1% to 10%, at Re = 300. By comparing the figure of merit values, the best heat transfer performance compared to pure water is obtained for water-based n-eicosane slurry at Re = 100, and epsilon(s) = 1%. A parametric study involving Reynolds number, particle concentration, and channel height to jet width ratio has been reported. Present results are validated with numerical and experimental results available in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据