4.2 Article

Utilization of Artificial Intelligence-based Intracranial Hemorrhage Detection on Emergent Noncontrast CT Images in Clinical Workflow

期刊

出版社

RADIOLOGICAL SOC NORTH AMERICA (RSNA)
DOI: 10.1148/ryai.210168

关键词

CT; CNS; Stroke; Diagnosis; Classification; Application Domain

向作者/读者索取更多资源

Authors implemented an AI-based detection tool for intracranial hemorrhage and evaluated its diagnostic performance and impact on clinical workflow. While the overall diagnostic accuracy was 93.0%, lower detection rates were observed for specific types of ICH. Workflow metrics showed a reduction in average time for communicating critical findings post-implementation, but further improvements are needed to streamline the entire workflow chain.
Authors implemented an artificial intelligence (AI)-based detection tool for intracranial hemorrhage (ICH) on noncontrast CT images into an emergent workflow, evaluated its diagnostic performance, and assessed clinical workflow metrics compared with pre-AI implementation. The finalized radiology report constituted the ground truth for the analysis, and CT examinations (n = 4450) before and after implementation were retrieved using various keywords for ICH. Diagnostic performance was assessed, and mean values with their respective 95% CIs were reported to compare workflow metrics (report turnaround time, communication time of a finding, consultation time of another specialty, and turnaround time in the emergency department). Although practicable diagnostic performance was observed for overall ICH detection with 93.0% diagnostic accuracy, 87.2% sensitivity, and 97.8% negative predictive value, the tool yielded lower detection rates for specific subtypes of ICH (eg, 69.2% [74 of 107] for subdural hemorrhage and 77.4% [24 of 31] for acute subarachnoid hemorrhage). Common false-positive findings included postoperative and postischemic defects (23.6%, 37 of 157), artifacts (19.7%, 31 of 157), and tumors (15.3%, 24 of 157). Although workflow metrics such as communicating a critical finding (70 minutes [95% CI: 54, 85] vs 63 minutes [95% CI: 55, 71]) were on average reduced after implementation, future efforts are necessary to streamline the workflow all along the workflow chain. It is crucial to define a clear framework and recognize limitations as AI tools are only as reliable as the environment in which they are deployed. (C)RSNA, 2022

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据