4.2 Article

Fracton topological order at finite temperature

期刊

PHYSICAL REVIEW RESEARCH
卷 4, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.4.L032008

关键词

-

资金

  1. NSFC [11825404]
  2. MOSTC [2018YFA0305604, 2021YFA1400100]
  3. Strategic Priority Research Program of Chinese Academy of Sciences [XDB28000000]

向作者/读者索取更多资源

This Letter investigates the fracton topological order of higher dimensional fracton models at nonzero critical temperature T-c, and demonstrates the existence of a finite critical temperature T-c. By analyzing the free energy of a typical 4D X-cube model using duality, it is shown that a finite critical temperature T-c exists. The expectation value of the 't Hooft loops in the 4D X-cube model reveals a confinement-deconfinement phase transition at finite temperature. Additionally, an alternative no-go theorem for finite-temperature quantum fracton topological order is proposed.
As new kinds of stabilizer code models, fracton models have been promising in realizing quantum memory or quantum hard drives. However, it has been shown that the fracton topological order of 3D fracton models occurs only at zero temperature. In this Letter, we show that higher dimensional fracton models can support a fracton topological order below a nonzero critical temperature T-c. Focusing on a typical four-dimensional (4D) X-cube model, we show that there is a finite critical temperature T-c by analyzing its free energy from duality. We also obtained the expectation value of the 't Hooft loops in the 4D X-cube model, which directly shows a confinement-deconfinement phase transition at finite temperature. This finite-temperature phase transition can be understood as spontaneously breaking the Z(2) one-form subsystem symmetry. Moreover, we propose an alternative no-go theorem for finite-temperature quantum fracton topological order.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据