4.6 Article

Competing insulating phases in a dimerized extended Bose-Hubbard model

期刊

PHYSICAL REVIEW A
卷 106, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.106.013313

关键词

-

向作者/读者索取更多资源

In a one-dimensional dimerized optical lattice, the extended Bose-Hubbard model shows stable density-wave (DW) and bond-order density-wave (BODW) phases at specific fillings and lattice dimerizations. The BODW phase is more robust with stronger hopping dimerization, and a phase crossover occurs with varying nearest-neighbor interaction. The stability of the BODW phase is further examined in the presence of finite on-site interactions.
We study the ground-state properties of the extended Bose-Hubbard model in a one-dimensional dimerized optical lattice. In the limit of strong on-site repulsion, i.e., hardcore bosons, and strong nearest-neighbor interaction, a stable density-wave (DW) phase is obtained at half-filling as a function of lattice dimerization. Interestingly, at quarter-filling we obtain the signatures of an insulating phase which has the character of both the bond order (BO) and the DW insulators, which we call a bond-order density-wave (BODW) phase. Moreover, we show that for a fixed hopping dimerization there occurs a BO-DW phase crossover as a function of the nearest-neighbor interaction and the BODW phase is more robust when the hopping dimerization is stronger. We further examine the stability of the BODW phase in the limit of finite on-site interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据