4.6 Article

Enhanced high-order harmonics through periodicity breaks: From backscattering to impurity states

期刊

PHYSICAL REVIEW A
卷 106, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.106.013105

关键词

-

向作者/读者索取更多资源

Backscattering of delocalized electrons has been found to enhance high-order harmonic generation in periodic systems with broken translational symmetry. This study explores the effect of variable spatial gaps in an atomic chain and identifies two mechanisms, backscattering and enhanced tunneling from an impurity state, that contribute to the enhanced harmonic generation.
Backscattering of delocalized electrons has been recently established [Phys. Rev. A 105, L041101 (2022)] as a mechanism to enhance high-order harmonic generation (HHG) in periodic systems with broken translational symmetry. Here we study this effect for a variable spatial gap in an atomic chain. Propagating the many-electron dynamics numerically, we find enhanced HHG and identify its origin in two mechanisms, depending on the gap size, either backscattering or enhanced tunneling from an impurity state. Since the gapped atomic chain exhibits both impurities and vacancies in a unified setting, it provides insight into how periodicity breaks influence HHG in different scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据