4.5 Article

Development and testing of a novel sulfur dioxide sonde

期刊

ATMOSPHERIC MEASUREMENT TECHNIQUES
卷 15, 期 14, 页码 4373-4384

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/amt-15-4373-2022

关键词

-

资金

  1. National Aeronautics and Space Administration [NNG11HP16A, 80NSSC18K1061]

向作者/读者索取更多资源

A novel technique has been developed to measure sulfur dioxide using a modification of the existing electrochemical concentration cell ozonesonde technology. This single-SO2-sonde system is effective in measuring both ground-based and vertical profiles of SO2 over a wide range of concentrations.
A novel technique has been developed to measure sulfur dioxide (SO2) using a modification of the existing electrochemical concentration cell (ECC) ozonesonde technology. The current sonde-based method to measure SO2 (i.e., the dual-sonde approach) involves launching two ozonesondes together, with one of the sondes having a filter to remove SO2 at the inlet. The SO2 profile is determined by taking the difference between the measurements from the two instruments. The dual-sonde method works well in typical tropospheric conditions when [O-3] > [SO2] but saturates when [SO2] > [O-3] and has large uncertainties in the upper troposphere and lower stratosphere that would limit its effectiveness in measuring SO2 from an explosive volcanic eruption. Due to these limitations, several modifications were made to create a single-sonde system that would directly measure SO2 (i.e., the SO2 sonde). These modifications included (1) a positively biased ECC current, (2) the addition of an O-3 removal filter, and (3) the addition of a sample dryer. The SO2 sonde measures SO2 as a reduction in the cell current. There was a strong correlation (r(2) > 0 :94) between the SO2 sonde and a Thermo 43 c analyzer during controlled laboratory tests and pre-flight tests. Varying humidity levels affected the SO2 sonde's sensitivity (avg D 84.6 +/- 31.7 ppbv mu A(-1), 1 sigma RSD = 37 %) during initial field tests, which was resolved by adding a sample dryer upstream of the O-3 removal filter and pump inlet. This modification significantly reduced the variability and increased the sensitivity of the SO2 measurements (avg D 47 +/- 5.8 ppbv mu A(-1), 1 sigma RSD = 12 %). Field tests included measurements near Kilauea volcano (before and during the 2018 eruption of the Lower East Rift Zone), Costa Rica's Turrialba volcano, and anthropogenic plumes from the Athabasca oil sands region of Alberta, Canada. This single-SO2-sonde system is an effective, inexpensive instrument for measuring both ground-based and vertical profiles of SO2 from anthropogenic and natural sources (i.e., volcanic eruptions) over a wide range of concentrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据