4.7 Article

Carbon nanotubes accelerates the bio-induced vivianite formation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 844, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.157060

关键词

Carbon nanotubes; Dissimilatory iron reduction; Vivianite; Toxicity; Enhancement

资金

  1. National Natural Science Foundation of China [52070140]
  2. Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology [HC202151]

向作者/读者索取更多资源

This study investigates the impact of carbon nanotubes (CNTs) on vivianite formation. The results show that the addition of CNTs can increase the production rate of vivianite. However, at the initial stage, CNTs can decrease the efficiency of iron reduction due to the damage to the cell membrane. In addition, the biotoxicity of CNTs stimulates a defense response in dissimilative iron-reducing bacteria (DIRB).
Vivianite widely existed in digested sludge and activated sludge as a potential phosphate resource recovered from wastewater treatment plants (WWTPs). As an important product of extracellular electron transfer (EET) and biological iron reduction, the production of vivianite can be enhanced by conductive materials. Carbon nanotubes (CNTs) with excellent electrical conductivity have been reported to promote electron transfer, which was applied in wastewater treatment to accelerate the degradation of the contaminants. However, the impact of CNTs on vivianite formation was barely reported. In this study, the iron reduction, vivianite recovery, and the biotoxicity of CNTs were investigated in order to determine the influence of CNTs towards the vivianite production. The enhancement of vivianite production after CNTs adding reached up to 17 % by promoting the electron transfer between dissimilative iron-reducing bacteria (DIRB) and Fe(III). However, at the initial stage (0-24 h), Fe(III) reduction efficiency decreased by 81 % after inoculating with sewage sludge, which was attributed to CNTs destroying of the cell membrane (as indicated by SEM, CLSM and AFM analysis). The biotoxicity of CNTs stimulated DIRB to secret extracellular polymeric substances (EPS) and form bio-flocs to resist the physical puncture. After 48 h, the proportion of living DIRB in 1000 mg/L CNTs batch increased to 98 %, which was 79 % higher than 12 h. As a result, the vivianite recovery of raw sewage with 1000 mg/L CNTs increased to 44 +/- 1 %, which was 33 % higher than that in the CNT-0.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据