4.7 Article

Power Calculation Using RBF Neural Networks to Improve Power Sharing of Hierarchical Control Scheme in Multi-DER Microgrids

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JESTPE.2016.2581762

关键词

Distributed energy resources (DERs); droop control; hierarchical control; microgrid; nonlinear equation set (NLES); power calculation; power sharing; radial basis function neural networks (RBFNNs); stability

向作者/读者索取更多资源

All control methods for the decentralized control of distributed energy resources (DERs) in the microgrid need to calculate power to decide whether the power produced will be able to stabilize the system. Unlike the previous research that is limited to the primary and secondary control levels, the presented decentralized droop-based control scheme includes detailed modeling for three hierarchical control levels for either grid-connected or autonomous modes. A new complementary control loop that is added to the hierarchical droop-based control scheme determines and controls the reactive power reference by a novel application of radial basis function neural networks (RBFNNs) for a fast, authentic, and accurate calculation of power to improve power sharing and enhance microgrid stability margins in facing with small and large signal disturbances. This method suppresses the low-pass filter that is normally used to determine high-frequency components of power and replaces it by the power flow nonlinear equation set that is solved by a novel application of RBFNNs, and consequently, power sharing to loads and network is done sufficiently. The simulation studies that have been performed on a microgrid consisting of four DERs and local loads using MATLAB/SIMULINK software demonstrate the effectiveness of the proposed control scheme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据