4.6 Article

Data and Energy Integrated Communication Networks for Wireless Big Data

期刊

IEEE ACCESS
卷 4, 期 -, 页码 713-723

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2016.2526622

关键词

Data and energy integrated communication networks (DEINs); energy harvesting (EH); wireless big data; power allocation; information dissemination

资金

  1. Experts Recruitment and Training Program of 985 Project [A1098531023601064]
  2. European Union Seventh Framework Programme through the CLIMBER Project [GA-2012-318939]

向作者/读者索取更多资源

This paper describes a new type of communication network called data and energy integrated communication networks (DEINs), which integrates the traditionally separate two processes, i.e., wireless information transfer (WIT) and wireless energy transfer (WET), fulfilling co-transmission of data and energy. In particular, the energy transmission using radio frequency is for the purpose of energy harvesting (EH) rather than information decoding. One driving force of the advent of DEINs is wireless big data, which comes from wireless sensors that produce a large amount of small piece of data. These sensors are typically powered by battery that drains sooner or later and will have to be taken out and then replaced or recharged. EH has emerged as a technology to wirelessly charge batteries in a contactless way. Recent research work has attempted to combine WET with WIT, typically under the label of simultaneous wireless information and power transfer. Such work in the literature largely focuses on the communication side of the whole wireless networks with particular emphasis on power allocation. The DEIN communication network proposed in this paper regards the convergence of WIT and WET as a full system that considers not only the physical layer but also the higher layers, such as media access control and information routing. After describing the DEIN concept and its high-level architecture/protocol stack, this paper presents two use cases focusing on the lower layer and the higher layer of a DEIN network, respectively. The lower layer use case is about a fair resource allocation algorithm, whereas the high-layer section introduces an efficient data forwarding scheme in combination with EH. The two case studies aim to give a better explanation of the DEIN concept. Some future research directions and challenges are also pointed out.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据