4.8 Article

Phosphorus-modified two-dimensional graphdiyne (CnH2n-2)/ZnCdS forms S-scheme heterojunctions for photocatalytic hydrogen production

期刊

NANOSCALE
卷 14, 期 33, 页码 12077-12089

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nr02671f

关键词

-

资金

  1. Chinese National Natural Science Foundation [22062001]

向作者/读者索取更多资源

This study improves the hydrogen evolution activity by constructing a phosphorus-doped graphdiyne/zinc-cadmium sulfide heterojunction photocatalyst. The graphite alkyne material serves as a substrate to anchor the bimetallic sulfide-zinc-cadmium sulfide, resulting in a close contact 2D/0D heterojunction interface.
Graphdiyne (GDY) is a new type of carbon allotrope material with a network structure composed of sp- and sp(2)-hybridized carbon, and its excellent photoelectrochemical properties have an extraordinary impact on energy materials. In this work, a graphite alkyne material was calcined and used as an anchor substrate to fix bimetallic sulfide-zinc-cadmium sulfide to form a phosphorus-doped graphdiyne (GDY-P)/zinc-cadmium sulfide (ZnCdS) heterojunction photocatalyst. The close contact between the 2D/0D binary heterojunction interfaces produced a strong interfacial force, and the final hydrogen evolution rate of the GDY-P/ZnCdS structure reached 10 395.57 mu mol g(-1) h(-1), which was 2.57 and 240 times those of ZnCdS and GDY, respectively. The S-scheme heterojunction constructed by GDY-P and ZnCdS accelerates the formation of electron-hole pairs, improves the utilization of strongly reduced electrons, and overcomes the self-agglomeration of ZnCdS, ensuring the high hydrogen evolution activity of the binary structure. This work provides a new application paradigm for the construction of S-scheme heterojunctions for hydrogen evolution using new carbon materials in the field of photocatalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据