4.0 Article

Comparative Evaluation and Comprehensive Analysis of Machine Learning Models for Regression Problems

期刊

DATA INTELLIGENCE
卷 4, 期 3, 页码 620-652

出版社

MIT PRESS
DOI: 10.1162/dint_a_00155

关键词

Machine learning; Regression; Comparative evaluation; Analysis; Validation

向作者/读者索取更多资源

This study aims to analyze the performance of machine learning models on different datasets, considering various training strategies and evaluation metrics. The results demonstrate that the deep Long-Short Term Memory (LSTM) neural network outperforms other models and indicate the significant impact of cross-validation on the experimental results.
Artificial intelligence and machine learning applications are of significant importance almost in every field of human life to solve problems or support human experts. However, the determination of the machine learning model to achieve a superior result for a particular problem within the wide real-life application areas is still a challenging task for researchers. The success of a model could be affected by several factors such as dataset characteristics, training strategy and model responses. Therefore, a comprehensive analysis is required to determine model ability and the efficiency of the considered strategies. This study implemented ten benchmark machine learning models on seventeen varied datasets. Experiments are performed using four different training strategies 60:40, 70:30, and 80:20 hold-out and five-fold cross-validation techniques. We used three evaluation metrics to evaluate the experimental results: mean squared error, mean absolute error, and coefficient of determination (R-2 score). The considered models are analyzed, and each model's advantages, disadvantages, and data dependencies are indicated. As a result of performed excess number of experiments, the deep Long-Short Term Memory (LSTM) neural network outperformed other considered models, namely, decision tree, linear regression, support vector regression with a linear and radial basis function kernels, random forest, gradient boosting, extreme gradient boosting, shallow neural network, and deep neural network. It has also been shown that cross-validation has a tremendous impact on the results of the experiments and should be considered for the model evaluation in regression studies where data mining or selection is not performed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据