4.7 Article

Multimodal Estimation of Endpoint Force During Quasi-Dynamic and Dynamic Muscle Contractions Using Deep Learning

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIM.2022.3189632

关键词

Convolutional neural networks (CNNs); deep learning; dynamic muscle contraction; force estimation; high-density (HD) electromyography

资金

  1. Natural Sciences and Engineering Research Council of Canada [RGPIN-2016-04788]

向作者/读者索取更多资源

This study proposes a novel approach for force/torque estimation using a deep multimodal convolutional neural network (CNN) with electromyogram-inertial measurement unit (EMG-IMU) data. The results show the robustness of the method and significant improvement in force estimation when incorporating kinematic information.
Accurate force/torque estimation is essential for applications such as powered exoskeletons, robotics, and rehabilitation. However, force/torque estimation under dynamic conditions is challenging due to changing joint angles, force levels, muscle lengths, and movement speeds. We propose a novel method to accurately model the generated force under isotonic, isokinetic (quasi-dynamic), and fully dynamic conditions. Our solution uses a deep multimodal convolutional neural network (CNN) to learn from multimodal electromyogram-inertial measurement unit (EMG-IMU) data and estimate the generated force for elbow flexion and extension, for both intra- and intersubject schemes. The proposed deep multimodal CNN extracts representations from EMG (in time and frequency domains) and IMU (in time domain) and aggregates them to obtain an effective embedding for force estimation. We describe a new dataset containing EMG, IMU, and output force data, collected under a number of different experimental conditions, and use this dataset to evaluate our proposed method. The results show the robustness of our approach in comparison to other baseline methods and those in the literature, in different experimental setups and validation schemes. The obtained R-2 values are 0.91 +/- 0.034, 0.87 +/- 0.041, and 0.81 +/- 0.037 for the intrasubject and 0.81 +/- 0.048, 0.64 +/- 0.037, and 0.59 +/- 0.042 for the intersubject scheme, during isotonic, isokinetic, and dynamic contractions, respectively. In addition, our results indicate that force estimation improves significantly when the kinematic information (IMU data) is included. Average improvements of 13.95%, 118.18%, and 50.0% (intrasubject) and 28.98%, 41.18%, and 137.93% (intersubject) for isotonic, isokinetic, and dynamic contractions, respectively, are achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据