4.7 Article

Electrospun PHBV nanofibers containing HA and bredigite nanoparticles: Fabrication, characterization and evaluation of mechanical properties and bioactivity

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 121, 期 -, 页码 115-122

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2015.11.006

关键词

Nano composite; Mechanical properties; Differential scanning calorimetry (DSC); Electro-spinning

资金

  1. Isfahan University of Technology
  2. Dept of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, NRF-Technion [R-265-000-538-592]

向作者/读者索取更多资源

In this study, hydroxyapatite (HA), bredigite (BR) and hydroxyapatite/bredigite (HABR) (50/50) nanoparticles were synthesized using sol gel method and characterized by X-ray diffractometer (XRD) and Transmission electron microscopy (TEM). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV nanofibers containing different concentrations (0, 5,10 and 15%) of HA or BR or HABR nanoparticles were prepared by electrospinning process. Physiochemical properties of the prepared nanofibers were evaluated by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC). Evaluation of their mechanical properties showed that the addition of 10% of any one of the above mentioned nanoparticles to PHBV produced composite nanofibers with regard to their tensile strength and Young's modulus. PHBV containing either 10% HA or 10% HABR showed higher mechanical strength and Young's modulus than the PHBV fibers incorporated with 10% BR. At the same time, studies on the ability of bone formation of the nanofibers in simulated body fluid (SBF) confirmed higher bone-like apatite formation on PHBV fibers containing either 10% HABR or BR compared to the HA composite. We concluded that the 10% HABR incorporated PHBV nanofibers possess optimized mechanical properties with high ability for apatite formation, thus potentially suitable as a novel substrate for bone regeneration application compared to the most commonly studied HA composite fibers. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据