4.6 Article

Bulk-edge correspondence in the trimer Su-Schrieffer-Heeger model

期刊

PHYSICAL REVIEW B
卷 106, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.106.085109

关键词

-

向作者/读者索取更多资源

A remarkable feature of the SSH3 model is the existence of localized edge states, but the change in the total number of edge states does not necessarily imply a phase transition. The topological invariant predicted by the 10-fold way classification may not coincide with the actual number of edge states. In this study, a simple alternative approach using sublattice Zak's phase is proposed, which remains valid in the absence of mirror symmetry and noncommensurate chains. The defined bulk quantity is gauge invariant and can be interpreted as the difference in the number of edge states between a reference and a target Hamiltonian. The derivation also predicts exact corrections for finite open chains and invokes a chiral-like symmetry.
A remarkable feature of the trimer Su-Schrieffer-Heeger (SSH3) model is that it supports localized edge states. However, in contrast to the dimer version of the model, a change in the total number of edge states in SSH3 without mirror-symmetry is not necessarily associated with a phase transition, i.e., a closing of the band gap. As such, the topological invariant predicted by the 10-fold way classification does not always coincide with the total number of edge states present. Moreover, although Zak???s phase remains quantized for the case of a mirror-symmetric chain, it is known that it fails to take integer values in the absence of this symmetry and thus it cannot play the role of a well-defined bulk invariant in the general case. Attempts to establish a bulk-edge correspondence have been made via Green???s functions or through extensions to a synthetic dimension. Here we propose a simple alternative for SSH3, utilizing the previously introduced sublattice Zak???s phase, which also remains valid in the absence of mirror symmetry and for noncommensurate chains. The defined bulk quantity takes integer values, is gauge invariant, and can be interpreted as the difference of the number of edge states between a reference and a target Hamiltonian. Our derivation further predicts the exact corrections for finite open chains, is straightforwardly generalizable, and invokes a chiral-like symmetry present in this model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据