3.8 Article

Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-air batteries

期刊

ESCIENCE
卷 2, 期 5, 页码 546-556

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.esci.2022.05.001

关键词

Bifunctional electrocatalysts; Oxygen electrocatalysis; Bimetallic nitrides; Hollow nanotube structure; Zn-air batteries

资金

  1. National Natural Science Foundation of China [22072107, 21872105]
  2. Science & Technology Commission of Shanghai Municipality [19DZ2271500]
  3. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

In this study, a self-templated synthesis technique was developed to fabricate FeNi3/FeNi3N catalyst with remarkable oxygen electrocatalytic performance. The catalyst showed high power density, small voltage gap, and excellent cycling stability in zinc-air batteries.
Air cathode performance is essential for rechargeable zinc-air batteries (ZABs). In this study, we develop a self-templated synthesis technique for fabricating bimetallic alloys (FeNi3), bimetallic nitrides (FeNi3N) and hetero-structured FeNi3/FeNi3N hollow nanotubes. Owing to its structural and compositional advantages, FeNi3/FeNi3N exhibits remarkable bifunctional oxygen electrocatalytic performance with an extremely small potential gap of 0.68 V between the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Theoretical calcu-lations reveal reduced Gibbs free energy for the rate-limiting O-O bond formation during OER due to the self-adaptive surface reconfiguration, which induces a synergistic effect between Fe(Ni)OOH developed in situ on the surface and the inner FeNi3/FeNi3N. ZAB fabricated using the FeNi3/FeNi3N catalyst shows high power density, small charge/discharge voltage gap and excellent cycling stability. In addition to its excellent battery performance, the corresponding quasi-solid-state ZAB shows robust flexibility and integrability. The synthesis method is extended to prepare a CoFe/CoFeN oxygen electrocatalyst, demonstrating its applicability to other iron-group elements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据