4.6 Article

Fermi Level Depinning in Two-Dimensional Materials Using a Fluorinated Bilayer Graphene Barrier

期刊

ACS APPLIED ELECTRONIC MATERIALS
卷 4, 期 8, 页码 3955-3961

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsaelm.2c00609

关键词

bilayer graphene; band gap opening; 2D materials; Fermi level pinning; Schottky barrier

资金

  1. Danish National Research Foundation (DNRF) Center for Nanostructured Graphene [DNRF103]
  2. EU Graphene Flagship Core 3 [881603]
  3. Villum Foundation [41016]
  4. China Scholarship Council [201906240046]

向作者/读者索取更多资源

This study demonstrates a method using fluorinated bilayer graphene as a barrier to prevent strong Fermi level pinning at metal/2D material interfaces, which enhances the tunability of Schottky barrier height and has potential applications in electronics and optoelectronics.
Strong Fermi level pinning (FLP), often attributed to metal-induced gap states at the interfacial contacts, severely reduces the tunability of the Schottky barrier height of the junction and limits applications of two-dimensional (2D) materials in electronics and optoelectronics. Here, we show that fluorinated bilayer graphene (FBLG) can be used as a barrier to effectively prevent FLP at metal/2D material interfaces. FLBG can be produced via short exposure (1-3 min) to SF6 plasma that fluorinates only the top layer of a bilayer graphene with covalent C-F bonding, while the bottom layer remains intrinsic, resulting in a band gap opening of about 75 meV. Inserting FBLG between the metallic contacts and a layer of MoS2 reduces the Schottky barrier height dramatically for the low-work function metals (313 and 260 meV for Ti and Cr, respectively) while it increases for the high-work function one ( 160 meV for Pd), corresponding to an improved pinning factor. Our results provide a straightforward method to generate atomically thin dielectrics with applications not only for depinning the Fermi level at metal/transition metal dichalcogenide interfaces but also for solving many other problems in electronics and optoelectronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据