4.5 Article

Galactic cold cores VII. Filament formation and evolution: Methods and observational constraints

期刊

ASTRONOMY & ASTROPHYSICS
卷 591, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201526263

关键词

ISM: clouds; infrared: ISM; submillimeter: ISM; dust, extinction; stars: formation

资金

  1. French national program PCMI
  2. CNES
  3. ESA Internal Research Fellowship Programme
  4. PCMI
  5. Academy of Finland [250741, 1285769]
  6. Observatoire Midi-Pyrenees (OMP) in Toulouse
  7. OTKA [NN111016, K101393]
  8. national funding agency: CSA (Canada)
  9. national funding agency: NAOC (China)
  10. national funding agency: CEA (France)
  11. national funding agency: CNES (France)
  12. national funding agency: CNRS (France)
  13. national funding agency: ASI (Italy)
  14. national funding agency: MCINN (Spain)
  15. national funding agency: SNSB (Sweden)
  16. national funding agency: STFC (UK)
  17. national funding agency: UKSA (UK)
  18. national funding agency: NASA (USA)
  19. funding agency BMVIT (Austria)
  20. funding agency ESA-PRODEX (Belgium)
  21. funding agency CEA/CNES (France)
  22. funding agency DLR (Germany)
  23. funding agency ASI/INAF (Italy)
  24. funding agency CICYT/MCYT (Spain)
  25. Science and Technology Facilities Council [ST/M000877/1] Funding Source: researchfish
  26. STFC [ST/M000877/1] Funding Source: UKRI

向作者/读者索取更多资源

Context. The association of filaments with protostellar objects has made these structures a priority target in star formation studies. However, little is known about the link between filament properties and their local environment. Aims. The datasets from the Herschel Galactic Cold cores key programme allow for a statistical study of filaments with a wide range of intrinsic and environmental characteristics. Characterisation of this sample can therefore be used to identify key physical parameters and quantify the role of the environment in the formation of supercritical filaments. These results are necessary to constrain theoretical models of filament formation and evolution. Methods. Filaments were extracted from fields at distance D < 500 pc with the getfilaments algorithm and characterised according to their column density profiles and intrinsic properties. Each profile was fitted with a beam-convolved Plummer-like function, and the filament structure was quantified based on the relative contributions from the filament core, represented by a Gaussian, and wing component, dominated by the power-law behaviour of the Plummer-like function. These filament parameters were examined for populations associated with different background levels. Results. Filaments increase their core (M-line,M-core) and wing (M-line,M-wing) contributions while increasing their total linear mass density (M-line,M-tot). Both components appear to be linked to the local environment, with filaments in higher backgrounds having systematically more massive M-line,M-core and M-line,M-wing. This dependence on the environment supports an accretion-based model of filament evolution in the local neighbourhood (D <= 500 pc). Structures located in the highest backgrounds develop the highest central A(V), M-line,M-core, and M-line,M-wing as M-line,M-tot increases with time, favoured by the local availability of material and the enhanced gravitational potential. Our results indicate that filaments acquiring a significantly massive central region with M-line,M-core greater than or similar to M-crit/2 may become supercritical and form stars. This translates into a need for filaments to become at least moderately self-gravitating to undergo localised star formation or become star-forming filaments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据