4.7 Article

On the Value of LES Models for Evaluating Spatio-Temporal Tropospheric Variability in Multitemporal SAR Interferograms

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTARS.2022.3200554

关键词

Atmospheric modeling; Delays; Refractive index; Numerical models; Synthetic aperture radar; Humidity; Liquids; Large-eddy simulation (LES); multitemporal interferometric synthetic aperture radar (InSAR); tropospheric delay

资金

  1. ESA

向作者/读者索取更多资源

Atmospheric delay has a significant impact on synthetic aperture radar (SAR) interferometry, especially on the turbulent and convective part of the atmosphere at smaller spatial and temporal scales. In order to accurately model the 3-D distribution of turbulent refractivity in the boundary layer, advanced large Eddy simulation (LES) models can be used. Using LES models, it has been found that tropospheric delay variation leads to significant phase errors within several minutes, even when using a perfect weather model with similar resolutions to the SAR image. LES models can be a realistic instrument for InSAR quality-assessments and for the development and simulation of future missions.
Atmospheric delay has a profound impact on synthetic aperture radar (SAR) interferometry, inducing a spatial signal that significantly devaluates interferometric products. While the wide-scale variability of the atmosphere can be adequately modeled with global or regional weather models, it is especially the turbulent and convective part of the atmosphere at smaller spatial and temporal scales that is typically poorly captured. Due to the high resolution and precision of InSAR, there is a need for a realistic modeling of the 3-D distribution of turbulent refractivity in the boundary layer. This would enable assessment of the impact of a temporal or spatial model misalignment on the interferometric products, and contribute to studying the impact for future SAR missions. Here we test the feasibility of an advanced large Eddy simulation (LES) model to simulate a time-series refractivity distribution with a high spatio-temporal resolution to show the spatio-temporal variability of the troposphere on short time scales. We found for a fair-weather situation that the LES model produces realistic atmospheric simulations that match stochastically with results found in interferometric studies and that tropospheric delay variation leads to significant phase gradients within several minutes. This implies that even when using an (unrealistic) perfect weather model with resolutions similar to the SAR image, realizations that are several minutes apart from the time of the SAR acquisition will lead to significant phase errors. We propose the use of LES models as a realistic instrument to perform InSAR quality-assessments and for the development and simulation for future missions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据