4.5 Article

High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

期刊

ASTRONOMY & ASTROPHYSICS
卷 588, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201527817

关键词

BL Lacertae objects: general; catalogs; gamma rays: galaxies; quasars: general; radiation mechanisms: non-thermal; radio continuum: galaxies

资金

  1. Curtin University
  2. Sydney Institute for Astrophysics
  3. PRIN-INAF
  4. NVIDIA at Harvard University
  5. Division Of Astronomical Sciences
  6. Direct For Mathematical & Physical Scien [1401708] Funding Source: National Science Foundation

向作者/读者索取更多资源

Context. Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. Aims. We characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. Methods. We cross-correlated the 6100 deg(2) Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. Results. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120-180 MHz) blazar spectral index is = 0.57 +/- 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at similar to GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Conclusions. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据