4.7 Article

Autophagy modulates the metabolism and growth of tomato fruit during development

期刊

HORTICULTURE RESEARCH
卷 9, 期 -, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/hr/uhac129

关键词

-

资金

  1. European Union [664621, 739582, 664620]
  2. National Natural Science Foundation of China [32002102]

向作者/读者索取更多资源

Although autophagy is a well-conserved mechanism, its effects on crops and their metabolism have been understudied. In this study, a deficiency in the autophagy-regulating protease ATG4 in tomato plants was generated using RNA interference (RNAi). The plants displayed an early senescence phenotype and reduced fruit yield. Metabolite profiling and transcriptome analysis revealed changes in primary and secondary metabolites, as well as upregulation of organelle degradation genes. Integration analysis of the data suggested that ATG4 significantly affected lipid metabolism, chlorophyll binding proteins, and chloroplast biosynthesis.
Although autophagy is a conserved mechanism operating across eukaryotes, its effects on crops and especially their metabolism has received relatively little attention. Indeed, whilst a few recent studies have used systems biology tools to look at the consequences of lack of autophagy in maize these focused on leaf tissues rather than the kernels. Here we utilized RNA interference (RNAi) to generate tomato plants that were deficient in the autophagy-regulating protease ATG4. Plants displayed an early senescence phenotype yet relatively mild changes in the foliar metabolome and were characterized by a reduced fruit yield phenotype. Metabolite profiling indicated that metabolites of ATG4-RNAi tomato leaves just exhibited minor alterations while that of fruit displayed bigger difference compared to the WT. In detail, many primary metabolites exhibited decreases in the ATG4-RNAi lines, such as proline, tryptophan and phenylalanine, while the representative secondary metabolites (quinic acid and 3-trans-caffeoylquinic acid) were present at substantially higher levels in ATG4-RNAi green fruits than in WT. Moreover, transcriptome analysis indicated that the most prominent differences were in the significant upregulation of organelle degradation genes involved in the proteasome or chloroplast vesiculation pathways, which was further confirmed by the reduced levels of chloroplastic proteins in the proteomics data. Furthermore, integration analysis of the metabolome, transcriptome and proteome data indicated that ATG4 significantly affected the lipid metabolism, chlorophyll binding proteins and chloroplast biosynthesis. These data collectively lead us to propose a more sophisticated model to explain the cellular co-ordination of the process of autophagy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据