4.6 Article

Optical and Transport Properties of Ni-MoS2

期刊

APPLIED SCIENCES-BASEL
卷 6, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/app6080227

关键词

reflectance; Hall effect; photoconductivity; Ni dopants; MoS2

资金

  1. Ministry of Science and Technology of Taiwan, Republic of China [MOST 104-2221-E-018-017, MOST 104-2112-M-018-004]

向作者/读者索取更多资源

In this paper, MoS2 and Ni-MoS2 crystal layers were fabricated by the chemical vapor transport method with iodine as the transport agent. Two direct band edge transitions of excitons at 1.9 and 2.1 eV were observed successfully for both MoS2 and Ni-MoS2 samples using temperature-dependent optical reflectance (R) measurement. Hall effect measurements were carried out to analyze the transport behavior of carriers in MoS2 and Ni-MoS2, which indicate that the Ni-MoS2 sample is n-type and has a higher resistance and lower mobility than the MoS2 sample has. A photoconductivity spectrum was performed which shows an additional Ni doping level existing at 1.2 eV and a higher photocurrent generating only for Ni-MoS2. The differences between MoS2 and Ni-MoS2 could be attributed to the effect of Ni atoms causing small lattice imperfections to form trap states around 1.2 eV. The temperature-dependent conductivity shows the presence of two shallow levels with activation energies (84 and 6.7 meV in MoS2; 57 and 6.5 meV in Ni-MoS2). Therefore, the Ni doping level leads to high resistance, low mobility and small activation energies. A series of experimental results could provide useful guidance for the fabrication of optoelectronic devices using MoS2 structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据