4.5 Article

Expression, purification and characterization of an endoglucanase from Serratia proteamaculans CDBB-1961, isolated from the gut of Dendroctonus adjunctus (Coleoptera: Scolytinae)

期刊

AMB EXPRESS
卷 6, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1186/s13568-016-0233-9

关键词

Cellulase; Serratia proteamaculans; Symbiosis; Bark beetles; Gut

资金

  1. CINVESTAV-IPN
  2. ICYTDF [45/2012]
  3. Consejo Nacional de Ciencia y Tecnologia, Mexico [202060]

向作者/读者索取更多资源

Serratia proteamaculans CDBB-1961, a gut symbiont from the roundheaded pine beetle Dendroctonus adjunctus, displayed strong cellulolytic activity on agar-plates with carboxymethyl cellulose (CMC) as carbon source. Automatic genome annotation of S. proteamaculans made possible the identification of a single endoglucanase encoding gene, designated spr cel8A. The predicted protein, named Spr Cel8A shows high similarity (59-94 %) to endo-1,4-beta-D-glucanases (EC 3.2.1.4) from the glycoside hydrolase family 8 (GH8). The gene spr cel8A has an ORF of 1113 bp, encoding a 371 amino acid residue protein (41.2 kDa) with a signal peptide of 23 amino acid residues. Expression of the gene spr cel8A in Escherichia coli yields a mature recombinant endoglucanase 39 kDa. Cel8A displayed optimal activity at pH 7.0 and 40 degrees C, with a specific activity of 0.85 U/mg. The enzyme was stable at pH from 4 to 8.5, retaining nearly 40-80 % of its original activity, and exhibited a half-life of 8 days at 40 degrees C. The K-m and V-max values for Spr Cel8A were 6.87 mg/ml and 3.5 mu mol/min/mg of protein, respectively, using CMC as substrate. The final principle products of Spr Cel8A-mediated hydrolysis of CMC were cellobiose, cello oligosaccharides and a small amount of glucose, suggesting that Spr Cel8A is an endo-beta-1,4-glucanase manifesting exo-activity. This is the first report regarding the functional biochemical and molecular characterization of an endoglucanase from S. proteamaculans, found in the gut-associated bacteria community of Dendroctonus bark beetles. These results contribute to improved understanding of the functional role played by this bacterium as a symbiont of bark beetles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据