4.8 Review

One-Dimensional Earth-Abundant Nanomaterials for Water-Splitting Electrocatalysts

期刊

ADVANCED SCIENCE
卷 4, 期 3, 页码 -

出版社

WILEY
DOI: 10.1002/advs.201600380

关键词

-

资金

  1. National Key Basic Research Program of China [2013CB934104]
  2. Natural Science Foundation of China [21322311, 21473038]
  3. Science and Technology Commission of Shanghai Municipality [14JC1490500]
  4. Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
  5. Collaborative Innovation Center of Chemistry for Energy Materials [2011-iChem]
  6. Fudan Undergraduate Research Opportunities Program: Deng-Hui Program
  7. Fudan Undergraduate Research Opportunities Program: Wang-Dao Program
  8. Fudan Undergraduate Research Opportunities Program: Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment

向作者/读者索取更多资源

Hydrogen fuel acquisition based on electrochemical or photoelectrochemical water splitting represents one of the most promising means for the fast increase of global energy need, capable of offering a clean and sustainable energy resource with zero carbon footprints in the environment. The key to the success of this goal is the realization of robust earth-abundant materials and cost-effective reaction processes that can catalyze both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with high efficiency and stability. In the past decade, one-dimensional (1D) nanomaterials and nanostructures have been substantially investigated for their potential in serving as these electrocatalysts for reducing overpotentials and increasing catalytic activity, due to their high electrochemically active surface area, fast charge transport, efficient mass transport of reactant species, and effective release of gas produced. In this review, we summarize the recent progress in developing new 1D nanomaterials as catalysts for HER, OER, as well as bifunctional electrocatalysts for both half reactions. Different categories of earth-abundant materials including metal-based and metal-free catalysts are introduced, with their representative results presented. The challenges and perspectives in this field are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据