4.8 Article

In Vivo Long-Term Biodistribution, Excretion, and Toxicology of PEGylated Transition-Metal Dichalcogenides MS2 (M = Mo, W, Ti) Nanosheets

期刊

ADVANCED SCIENCE
卷 4, 期 1, 页码 -

出版社

WILEY
DOI: 10.1002/advs.201600160

关键词

-

资金

  1. National Natural Science Foundation of China [51302180, 51572180]
  2. National 973 Program of China [2012CB932601]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions
  4. Postdoctoral science foundation of China [2013M531400, 2014T70542]
  5. Collaborative Innovation Center of Suzhou Nano Science and Technology (Nano-CIC) for the fellowship of Young Scientists Overseas Exchanges and Cooperation Program

向作者/读者索取更多资源

With unique 2D structures and intriguing physicochemical properties, various types of transition metal dichalcogenides (TMDCs) have attracted much attention in many fields including nanomedicine. Hence, it is of great importance to carefully study the in vivo biodistribution, excretion, and toxicology profiles of different TMDCs, and hopefully to identify the most promising type of TMDCs with low toxicity and fast excretion for further biomedical applications. Herein, the in vivo behaviors of three representative TMDCs including molybdenum dichalcogenides (MoS2), tungsten dichalcogenides (WS2), and titanium dichalcogenides (TiS2) nanosheets are systematically investigated. Without showing significant in vitro cytotoxicity, all the three types of polyethylene glycol (PEG) functionalized TMDCs show dominate accumulation in reticuloendothelial systems (RES) such as liver and spleen after intravenous injection. In marked contrast to WS2-PEG and TiS2-PEG, which show high levels in the organs for months, MoS2-PEG can be degraded and then excreted almost completely within one month. Further degradation experiments indicate that the distinctive in vivo excretion behaviors of TDMCs can be attributed to their different chemical properties. This work suggests that MoS2, among various TMDCs, may be particularly interesting for further biomedical applications owning to its low toxicity, capability of biodegradation, and rapid excretion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据