4.6 Article

Self-Assembled Multifunctional 3D Microdevices

期刊

ADVANCED ELECTRONIC MATERIALS
卷 2, 期 6, 页码 -

出版社

WILEY
DOI: 10.1002/aelm.201500459

关键词

-

资金

  1. University of Minnesota, Twin Cities
  2. National Science Foundation through the University of Minnesota MRSEC [DMR-1420013]

向作者/读者索取更多资源

Multifunctional 3D microstructures have been extensively investigated for the development of new classes of electronic and optical devices. Here, functionalized, free-standing, hollow, 3D, dielectric (150 nm thick aluminum oxide) microcontainers with metal patterning on their surfaces are realized by an evolved self-assembly approach. To functionalize the 3D structure and use it as a device, metal patterns, arrays of split-ring resonators (SRRs) acting as metamaterials, are defined on the surface of the 3D dielectric microcontainers. The SRRs on all six facets of a given microcube show a resonant behavior in terahertz regimes. Since desired metal and semiconductor patterns can be incorporated onto surfaces of 3D dielectric microstructures, this self-assembly process can be harnessed in developing next-generation microdevices utilizing the numerous advantages of 3D configurations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据