4.7 Article

Size-dependent torsion of functionally graded bars

期刊

COMPOSITES PART B-ENGINEERING
卷 82, 期 -, 页码 205-211

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2015.08.011

关键词

Mechanical properties; Microstructures; Analytical modelling; Micro-mechanics; Modified couple stress theory

向作者/读者索取更多资源

In this paper, size-dependent static and dynamic behavior of functionally graded microbars is investigated on the basis of the modified couple stress theory. The equation of motion and corresponding boundary conditions are derived using Hamilton's principle and presented in the dimensionless form. Equivalent mechanical properties (i.e. shear modulus, density and length scale) are extracted for the functionally graded microbar based on the mechanical properties of the material constituents. In this work, it is shown that without any simplifying assumption, two equivalent length scale parameters can be defined for functionally graded bars and the size-dependent mechanical behavior of these components can be explained using these parameters. As an example, static and dynamic behavior of a functionally graded microbar with fixed-free boundary conditions is analyzed and the effect of size-dependency on mechanical behavior of this structure is discussed. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据