4.6 Article

Tracking Janus microswimmers in 3D with machine learning

期刊

SOFT MATTER
卷 18, 期 38, 页码 7291-7300

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2sm00930g

关键词

-

资金

  1. ETH Zurich

向作者/读者索取更多资源

Advancements in artificial active matter systems heavily rely on our ability to characterise their motion. Yet, the most widely used tool to analyse the latter is standard wide-field microscopy, which is largely limited to the study of two-dimensional motion. This study presents a Machine Learning approach that uses labelled training data to track Janus microswimmers in three dimensions, demonstrating the effectiveness of ensemble Decision Tree-based models in tracking particles over a volume spanning more than 40 μm.
Advancements in artificial active matter systems heavily rely on our ability to characterise their motion. Yet, the most widely used tool to analyse the latter is standard wide-field microscopy, which is largely limited to the study of two-dimensional motion. In contrast, real-world applications often require the navigation of complex three-dimensional environments. Here, we present a Machine Learning (ML) approach to track Janus microswimmers in three dimensions, using Z-stacks as labelled training data. We demonstrate several examples of ML algorithms using freely available and well-documented software, and find that an ensemble Decision Tree-based model (Extremely Randomised Decision Trees) performs the best at tracking the particles over a volume spanning more than 40 mu m. With this model, we are able to localise Janus particles with a significant optical asymmetry from standard wide-field microscopy images, bypassing the need for specialised equipment and expertise such as that required for digital holographic microscopy. We expect that ML algorithms will become increasingly prevalent by necessity in the study of active matter systems, and encourage experimentalists to take advantage of this powerful tool to address the various challenges within the field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据