4.6 Article

Insights into cation-anion hydrogen bonding in mesogenic ionic liquids: an NMR study

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 24, 期 38, 页码 23532-23539

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2cp03188d

关键词

-

资金

  1. Swedish Research Council VR [2017-04278]
  2. Swedish Research Council [2017-04278] Funding Source: Swedish Research Council

向作者/读者索取更多资源

This study investigates the hydrogen-bonding interaction in imidazolium-based mesogenic ionic liquids in different phases using solid-state nuclear magnetic resonance (NMR). The results show that the more basic anions form stronger hydrogen bonds in the smectic phase. The strength of the hydrogen bonds slightly decreases in the mesophase compared to the isotropic phase. Additionally, the cation structural modification does not significantly affect the hydrogen bond strength as long as the aprotic nature of the material is preserved.
The hydrogen-bonding interaction is studied in imidazolium-based mesogenic ionic liquids in their isotropic, smectic, and solid phases and in a nanoconfined state by proton solid-state nuclear magnetic resonance (NMR). In the smectic phase, the more basic anions form stronger hydrogen bonds. A small decrease of H-bonding in the mesophase with respect to that in the isotropic phase is associated with the presence of a layered assembly with high orientational order and limited conformational freedom. Hydrogen bond strength is not sensitive to the cation structural modification as long as the aprotic nature of the material is preserved. The strong cation-anion hydrogen bonding observed in the smectic phases provides direct support for the presence of ionic sublayers which form in ionic liquid crystals regardless of the location and alignment of the charged group in the cation, particularly irrespective of whether the charged group occupies a terminal or central position in the cation structure. A comparison of the results obtained in isotropic, liquid-crystalline, and solid states shows that in the bulk materials the dynamic state of ions ranging from high reorientational and translational freedom to partial orientation and positional order to full immobilization, respectively, has no strong impact on the cation-anion hydrogen bond strength. On the other hand, nanoconfinement of ionic liquid crystals led to hydrogen bond disruption due to competing interactions of anions with a solid interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据